Effective Multi-step Temporal-Difference Learning for Non-Linear Function Approximation
نویسنده
چکیده
Multi-step temporal-difference (TD) learning, where the update targets contain information from multiple time steps ahead, is one of the most popular forms of TD learning for linear function approximation. The reason is that multi-step methods often yield substantially better performance than their single-step counter-parts, due to a lower bias of the update targets. For non-linear function approximation, however, single-step methods appear to be the norm. Part of the reason could be that on many domains the popular multi-step methods TD(λ) and Sarsa(λ) do not perform well when combined with non-linear function approximation. In particular, they are very susceptible to divergence of value estimates. In this paper, we identify the reason behind this. Furthermore, based on our analysis, we propose a new multi-step TD method for non-linear function approximation that addresses this issue. We confirm the effectiveness of our method using two benchmark tasks with neural networks as function approximation.
منابع مشابه
Factored Temporal Difference Learning in the New Ties Environment
Although reinforcement learning is a popular method for training an agent for decision making based on rewards, well studied tabular methods are not applicable for large, realistic problems. In this paper, we experiment with a factored version of temporal difference learning, which boils down to a linear function approximation scheme utilising natural features coming from the structure of the t...
متن کاملOn a convergent off -policy temporal difference learning algorithm in on-line learning environment
In this paper we provide a rigorous convergence analysis of a “off”-policy temporal difference learning algorithm with linear function approximation and per time-step linear computational complexity in “online” learning environment. The algorithm considered here is TDC with importance weighting introduced by Maei et al. We support our theoretical results by providing suitable empirical results ...
متن کاملIncremental Least-Squares Temporal Difference Learning
Approximate policy evaluation with linear function approximation is a commonly arising problem in reinforcement learning, usually solved using temporal difference (TD) algorithms. In this paper we introduce a new variant of linear TD learning, called incremental least-squares TD learning, or iLSTD. This method is more data efficient than conventional TD algorithms such as TD(0) and is more comp...
متن کاملConvergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation
We introduce the first temporal-difference learning algorithms that converge with smooth value function approximators, such as neural networks. Conventional temporal-difference (TD) methods, such as TD(λ), Q-learning and Sarsa have been used successfully with function approximation in many applications. However, it is well known that off-policy sampling, as well as nonlinear function approximat...
متن کاملEmphatic Temporal-Difference Learning
Emphatic algorithms are temporal-difference learning algorithms that change their effective state distribution by selectively emphasizing and de-emphasizing their updates on different time steps. Recent works by Sutton, Mahmood and White (2015), and Yu (2015) show that by varying the emphasis in a particular way, these algorithms become stable and convergent under off-policy training with linea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1608.05151 شماره
صفحات -
تاریخ انتشار 2016